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The propagation of electromagnetic energy through an 
absorbing dielectric 

R. LOUDONt 
Physics Department, Essex University, Colchester 
M S .  received 27th November 1969 

Abstract. The energy associated with an electromagnetic wave passing through 
a dielectric resides partly in the electromagnetic field and partly in the accom- 
panying excitation of the dielectric. The theory of energy propagation through 
an absorbing classical dielectric having a single resonant frequency is presented 
in this paper. Simple expressions are derived for the velocity of energy trans- 
port associated with an electromagnetic wave, and for the finite energy relaxa- 
tion time caused by the damping mechanism. The variations of these quantities, 
and of the absorption coefficient, with the relative values of the damping constant 
and dipole moment of the classical oscillator are investigated. This information 
is used to throw light on the basic mechanism of irreversible dissipation of 
energy by an electromagnetic wave in a dielectric. The similarities between the 
calculations of the dielectric constant by classical dispersion theory and by 
quantum mechanics are discussed. 

1. Introduction 

a dispersive but non-absorbing dielectric is equal to the group velocity 
It is well known that the velocity of propagation of electromagnetic energy through 

VG = dw/dk (1) 
where w and k are the angular frequency and wave vector of the electromagnetic 
wave. 

For an absorbing dielectric, on the other hand, difficulties arise in attempting to 
relate vG to the velocity of energy propagation. The  wave vector k is now complex, 
corresponding to attenuation of the wave in its passage through the material. If the 
real part of k is used in equation (l), it is found that vG may be greater than the free- 
space velocity of light in certain frequency ranges, and may be negative in others. 
These features are incompatible with energy flow, and the concept of group velocity 
breaks down. The  situation is discussed in several textbooks (for example, Stratton 
1941, Panofsky and Philips 1962, Knox 1963, Born and Wolf 1965, Lipson and 
Lipson 1969) and has been treated in detail by Brillouin (1960). 

The  true energy velocity vE for an eIectromagnetic wave can be defined as the 
rate of energy flow, determined by the Poynting vector, divided by the stored energy 
density of the wave. It will be shown below that oE defined in this way is equal to 
oG for a non-absorbing dielectric, but the two velocities differ in the presence of 
absorption. 

The  main aim of the present paper is to obtain expressions for vE based on the 
classical oscillator model of a dielectric. The  Poynting vector is easily calculated, and 
the significant step in deriving vE is the calculation of the energy density associated 
with the wave. A previous calculation of uE by Brillouin (1960) gives an incorrect 
result for the energy density, and more recently Neufeld (1966, 1969) has suggested 
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that classical dispersion theory is incapable of producing a satisfactory expression for 
the energy density. After a review of classical theory in $ 2, it will be shown in $ 3 
that an acceptable expression for the energy density can in fact be obtained. When the 
frequency of the electromagnetic wave is close to the oscillator frequency of the 
dielectric, a substantial part of the energy of the wave resides in the excited oscillators. 
This part of the energy must be added to the electromagnetic field energy to obtain a 
correct expression for the energy density. 

The  absorption coefficient is related to the energy velocity and is discussed in $4.  
Expressions for nE itself are presented in $ 5 .  This quantity is of current interest in 
the theories of self-induced transparency (McCall and Hahn 1967, Courtens 1968), 
Raman scattering by polaritons (Loudon 1969) and resonance Raman scattering by 
phonons (Burstein et al. 1969). Use of rG instead of aE in the latter problem can lead 
to incorrect predictions, as pointed out by Loudon (1965). The  energy velocity has 
also been discussed by Schulz-DuBois (1969). 

Consideration is given in the following section to another related quantity known 
as the relaxation time, defined as the time taken for the energy flow to decrease to a 
fraction l ie  of its initial value due to the absorption. The  attenuation of the electro- 
magnetic wave is due to the dissipation of that part of the energy of the wave which 
resides in the dielectric oscillators. The  rate of attenuation in time is proportional to 
the fraction of the wave's energy which resides in the oscillators. 

The  properties of the energy velocity, absorption coefficient and relaxation time 
in the limits of large and small oscillator damping are examined in $ 7. 

Finally, $ 8 contains discussions of the relationship between the classical model 
and the quantum-mechanical treatment of absorption processes. It is shown that the 
relaxation time usually calculated quantum mechanically is simply related to the 
imaginary part of the dielectric constant and is not the quantum-mechanical analogue 
of the relaxation time defined in $ 6. 

2. The classical model 
In  classical theory, a dispersive and absorbing medium is represented by a 

collection of damped, non-interacting, harmonic oscillators of displacement r,  mass 
M ,  natural frequency w o  and effective charge e. Assuming a damping proportional to 
i ,  the equation of motion of an oscillator in the presence of an oscillating electric 
field E is: 

M ( r + r r + w O 2 r )  = e E .  (2) 
It is assumed that the frequency w of the electric field lies in the vicinity of U,,, and 
that all the other resonances in the medium are at frequencies well removed from wo. 
The  effect of the resonances which have frequencies greater than w o  can then be 
represented by a real constant background dielectric constant E,. If there are no 
higher frequency resonances, then E ,  = 1. 

Local field corrections do not need to be explicitly included in the equations since 
their effect can always be taken into account by suitable modification of the natural 
frequency w,, and the effective charge e (see $ 9 of Born and Huang 1954). 

The  complex polarization P has a part due to the oscillators of natural frequency 
U,,, and a part due to the higher frequency resonances 
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where V is the volume occupied by a single oscillator. For an isotropic dielectric 
medium or for a cubic crystal, r,  E and P all point in the same direction, and the 
complex dielectric constant is 

P 
E E = 1 + 4 ~ - .  ( 4 )  

If r,  E and P have space and time dependence of the form exp {i(k . R - ut)}, then 
equations (2), (3) and ( 4 )  give 

2 4ne2 1 .=E) = e , + - -  MV -w2-iiwr+wo2' (5) 

It is convenient to define a frequency A by 

4ne2 
n 2  = --, 

MVE, 

This is the frequency of plasma oscillations of a collection of charge carriers of mass 
h2, charge e and concentration l / V  in a medium of background dielectric constant 
E , .  The quantity A measures the strength of the interaction between the oscillators 
and the electromagnetic field, i.e. A is proportional to the dipole moment of the 
oscillator. 

The  index of refraction n and the extinction coefficient K are defined by 

Separation of equation (5) into real and imaginary parts now yields the usual results 
of the classical model: 

If we denote the dielectric constant at frequencies much smaller than w o  by eo, it 
follows from (5) that 

4ne2 
€0 = E ,  + ___ 

,7cIVwo2 

A common application of the theory is in the interpretation of the absorption and 
dispersion caused by lattice vibrations (see e.g. Spitzer et al. 1959). The  above analysis 
applies directly to the vibrations of a cubic diatomic lattice if M is taken to be the 
reduced mass of the two atoms in the unit cell and V is the unit cell volume. Equa- 
tion (10) is then the well-known expression for the effective charge e in terms of 
(eo (Born and Huang 1954, Kittel 1966). 
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For zero damping, I? = 0, it is seen from (8) that n vanishes for frequencies 
lying in the range w o  to (wo2+ A2)1'2. This frequency range is known as the stop- 
band. For frequencies outside the stop-band, k is real and the group velocity deter- 
mined from (1) and (8) is 

It follows from equation (11) that vG is always positive and never exceeds L / E , ~ / ~ .  

These properties do not hold good if vG is evaluated using equation (1) with k = nwjc 
for the case of finite damping (I' # 0) (Rrillouin 1960). 

3. The energy density 

the result (Stratton 1941) 
It is straightforward to derive, from Maxwell's equations for the curls of E and H ,  

k i , E x H . d c r =  - i, ( E .  k + H .  H+47i-E. P 
4n 

where T is any volume and U is the surface surrounding T.  The left-hand side 
represents the rate at which energy leaves T by propagation across its surface, deter- 
mined by the Poynting vector 

L 
S = - E x H .  

4n 

The integrand on the right-hand side of (12) can be re-expressed, using (2)  and (3) to 
obtain 

. E , - 1  M 
4n V 

E . P = -  E .  k+  - ( ( i : + r i + w 0 2 r )  .i 

= - d (- ~,-l E2 + - *$I (P + w o z ~ 2 )  

dt 877 2 v  

The integrand is thus the sum of a perfect time-differential and the dissipation term 
MI'P/V. If we define an energy density 

M €,E2 + H 2  
2v 8T 

w = - (P + w 0 2 q  + -___ 

and use (13) and (14), equation (12) can be written 

Now Mri2 is the rate at which the oscillator dissipates energy owing to the 
damping mechanism. Equation (16) thus expresses conservation of energy in the 
dielectric, the terms on the left being the rate of energy loss in the volume T by leakage 
across its surface and by dissipation, while the integral on the right is the rate of 
change of the energy stored within T .  Since p i s  a perfect differential, the expression( 15) 
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for the energy density W is valid for all forms of time variation of the vector 
quantities and there is no restriction to harmonic oscillations in this paragraph. We 
note that W includes contributions from the kinetic and potential energies of the 
oscillators in addition to the contributions which depend on the electromagnetic field. 
Expressions similar to (15) have been derived for zero damping by Huang (1951) (see 
also Born and Huang 1954) and have been assumed by Brillouin (1960). 

Returning now to the case of a harmonic time dependence for r,  P ,  E and H ,  we 
require expressions for the real Poynting vector S and energy density W averaged over 
a cycle of the oscillation. The  time average of the product of the real parts of two 
harmonically time-varying complex numbers A and B is equal to &Re(AB*). Thus, 
if we denote time averages by a bar, and use H = ( n  + iK)E, the magnitude of ,.$ given 
by (13) is 

- cn s = - IE/2. aT 
In  a similar way, using equations (2), (8) and (9) to eliminate r and H from (ls), 

+e, +n2+ K 2 j  

Equations (17) and (18) form the basis for most of the subsequent discussion. 
depends not only on n and K but also on the parameters of the 

model used to describe the absorbing dielectric. Expression (18) is thus not com- 
pletely general. The  dependence of energy density on the model has been discussed 
by Ginzburg (1964) for the case of an electromagnetic wave interacting with a plasma. 
Despite this model dependence, we expect the qualitative properties of the equations 
derived to be independent of the details of the chosen model. 

is always a positive quantity. Neufeld 
(1966, 1969) has incorrectly suggested that standard methods cannot lead to an 
acceptable expression for the energy density and has introduced a drastic revision of 
classical dispersion theory in order to surmount this supposed difficulty. In  this 
revised theory the energy stored in the oscillators is independent of r. In  the present 
theory the oscillator energy is represented by the first term in the bracket of the first 
line of (18), and when integrated over frequency is found to be proportional to l/r. 
This is in agreement with the predictions of quantum mechanics for the mean energy 
of excitation of atoms subjected to a beam of radiation. 

It is seen that 

Note that the stored energy density 

In  the limit of zero damping, where r and K vanish, (18) can be written 

I ' + O  
8v dw 

where (8) and (9) have been used. This is a special case of a general result derived 
for zero damping by several authors (Brillouin 1960, Pelzer 1951, Landau and Lifshitz 
1960, Stern 1963, Erber 1964). 
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4. The absorption coefficient 
The mean rate of dissipation of energy density is 

Z W K S  
= __- 

C 

= oscillator kinetic-energy density x 2r (20) 
where equations (2), (9) and (17) have been used. The  time-averaged form of (16) is 
thus 

If 3 is assumed to point in the z direction, this integral equation can be written in the 
differential form 

2 W K S  s 2# 
a2 C L (22) - - - -  _ -  

where 
1 2 W K  

L e  
=- - 

is the absorption coefficient for the wave. That is, L is the distance after which the 
energy flow in the wave is reduced to l ie  of its original value. 

The  expression for the absorption coefficient derived by Seitz (1940, p. 631) differs 
from the above result by a factor n. This is due to his use of incorrect equations for 
the energy density and for the velocity of energy propagation. 

5.  The energy velocity 
The velocity elE with which energy is transported through a dielectric medium is 

called the energy velocity. This velocity was first defined and studied theoretically by 
Brillouin (1960-the expression for the energy velocity obtained from equations (20) 
and (26) of chapter 5 of this reference is incorrect owing to errors in the equation at 
the top of p. 120). In  terms of the quantities defined in $ 3  

where (17) and (18) have been used. This compares with the velocity cp = C / I Z  of the 
planes of constant phase. 

Using (23), the expression for w E  can be rewritten -=-pinI-)  1 1  2 W K  

E E  cp 

1 1  
- +-. - _  

cp L r  
For the case of exact resonance, where w = w 0  and +cm = n2, it is seen from (18) 
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that the factor 2 w ~ / n F  is just the oscillator energy density divided by the electro- 
magnetic energy density. In  this form the expression (25) for vE is identical with that 
derived for the velocity of transmission of a light pulse in self-induced transparency 
experiments (McCall and Hahn 1967, Courtens 1968). In  fact, a rigorous treatment 
of the velocity of propagation of a pulse of electromagnetic radiation (sometimes 
called the signal velocity) requires complicated mathematics (Brillouin 1960, Baerwald 
1930, Weber and Trizna 1966). However, the detailed theory shows that in certain 
limits the signal velocity is identical with the energy velocity discussed here. 

It may also be mentioned that the theory of the propagation of ultrasonic waves in 
a region of resonant absorption closely parallels that given here for electromagnetic 
waves. An expression for the ultrasonic energy velocity similar to (25) is derived, and 
the theoretical predictions have been verified experimentally (Shiren 1962, 1965). 
h property of the energy velocity which is required by relativity theory is that it 

should be smaller than the free-space velocity of light c at all frequencies w .  It is not 
immediately obvious from (24) that vE has this property. The  property can be verified, 
however, by substituting for n and K obtained by solution of (8) and (9). 

When F + 0, the expression for vE obtained from (24) (or from (17) and (19)) is 
identical with the group velocity vG defined by (1). 

6 .  The relaxation time 
In  addition to the absorption coefficient 1/L, which measures the spatial rate of 

attenuation of the wave, it is also possible to define a relaxation time T which deter- 
mines the time rate of decay of energy flow. Consider a point which moves with the 
wave at the energy velocity vE. In  the notation of hydrodynamics (see e.g. Coulson 
1952, p. 61) the time rate of change of the energy flow s at this moving point is 

DS aS aS 
+vE- 

Dt Et ax 
_ -  _ -  

using equation (22) and the fact that 2sjat = 0. Thus T is the time at which the 
energy flow at a point moving with the energy velocity is reduced to l ie  of its original 
value. The  quantities vE, L and T are related by 

L 
SE = -. 

T 
From equations (23), (24.) and (27): 

Thus, in words, 
1 
T Total energy density 

Rate of dissipation of energy density __ - - - 

Oscillator kinetic energy density 
Total energy density 

x 217 - - 
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where all the energy densities are assumed to be time-averaged. Finally, using (8) 
and (9), we can write down an explicit expression for the relaxation time in terms of 
I? and A :  

4U'AT 
[ { ( W O '  - U')' + u21")1'' + { ( U ~ '  - u2 + A')' + W~I'~}~/']' + 4w'A' - ,i4' 

The positice square roots must always be used on the right-hand side of (30). 

(30) - 
1 
T 
- -  

7. Discussion 
The properties of wave propagation through a dielectric can be illustrated by 

some limiting cases. Consider first the zero-damping limit. When I' is very much 
smaller than A and w o ,  equation (30) reduces to 

1 - = r  
T 

for wO2 < w2 < wO2 +A2 

w2A2r 
for U' < wO2 and U' > uO2+h2. (32) -- - 

1 
T 
_ -  

( W O '  - U')' + U,~A' 

The expressions (31) and (32) are continuous at the two ends of the stop-band. 
Comparison of (29) with (31) shows that, for very small I? and for a frequency in the 
stop-band, half the total energy density of the wave resides in the kinetic energy of the 
oscillators. Evaluating K from (8) and (9) in the limit of small F, the absorption 
coefficient given by (23) is 

where only the leading term in a power series in I' has been retained. These expres- 
sions are incorrect over small regions of extent - I' at the two ends of the stop-band. 

The  interpretation of the results of the last paragraph is as follows. In the limit 
where the damping F is reduced to zero, the relaxation time T tends to infinity as 
ljr. However, within the stop-band, the velocity Q~ of energy transport tends to 
zero linearly with I?, so that the product VET is finite, and the absorption coefficient 
1/L does not vanish. Outside the stop-band, where wE remains finite as P tends to 
zero, both the inverse relaxation time and the absorption coefficient vanish in the 
limit. The  integrated absorption coefficient for I' = 0 obtained from (33) and (34) is 

Indeed, this sum rule on the absorption coefficient is a general result which can be 
shown to hold irrespective of the magnitude of I? (Stern 1963). The  above result is in 
disagreement with Pelrar (1959) who claims that the proportionality between the 
integrated absorption coefficient and the strength of the dispersion (proportional to 
A') is not valid in the limit of zero damping. 

Now consider the limit where I? is much larger than A2/w0.  The solutions of 
(8) and (9) show that 2nK is small compared with unity and that K is much smaller 
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than 71. Thus if we neglect 2 on the left-hand side of (8) and substitute into (28): 

w2n2r - 1 
T 
_ -  

(wo2 - w2)' + w 2 r 2  + wo2A2' (36) 

Further, if we set n eqiial to em1l2 on the left-hand side of (9) the absorption coefficient 
given by (23) is 

E a 1 ' 2 W 2 h 2 r / C  
- 

1 _ -  
L (wo2 - w 2 ) 2 + w 2 r 2  

since r < wo. The final approximate expression in this equation is the Lorenrzian 
line shape. The  integrated absorption coefficient given by (37) is identical with the 
result (35) obtained for the r = 0 limit. 

When r is large, not only compared with A2/Wo but also compared with A, the 
final term in the denominator of (36) can be neglected. Equations (36) and (37) shom- 
that vE is equal to the phase velocity c / E , ~ ' ~  in this limit. 

and A / w o  = 10-1 to 1. Thus phonons correspond quite closely to the 
I' 4 w o  and I' < A limit discussed at the beginning of this section. For rare-earth 
doped crystals (e.g. Sm2+ in CaF,) of the type used as laser rods, the electronic 
transitions of the rare-earth ions may have !?/WO of order to 10-1 and A/wo  of 
order with A generally an order of magnitude smaller than I?. Thus the 
I' 9 A limit is usually more appropriate in this case. Exciton transitions in semi- 
conductors show a wide variety of values of I' and A. However, in many important 
cases, the inequality r > A 2 / w o  is satisfied, and I? and A differ by an order of 
magnitude or less. The  results (36) and (37) therefore apply. 

For phonons in polar diatomiccubiccrystals, typicalvaluesare r / w 0  = to 

to 

51 1 1 1  I I I 

4 c ( r = o  

W I W ,  

Figure 1. Frequency dependence of the absorption coefficient for A = w0/2  
and the three values of I? indicated against the appropriate curves. 
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In  figures 1, 2 and 3 we show the forms of 1/L, 1/T and cE as functions of fre- 
quency for r = 0, A j l O  and A, and for A = wo/2.  This is a realistic value of h for 
the case of a phonon. In  each of the three figures the quantity plotted is multiplied 
by a constant to produce a convenient scale and to avoid the necessity of choosing a 
particular value of E,, For larger values of r relative to 1 1  the frequency dependences 
all become simpler, as discussed above, and we do not give any graphs for such 
values of I?. 

I -7 

- I  

O L  0 0.5 1.5 2.0 2.5 

Figure 2. Frequency dependence of the relaxation rate. The rate is zero at all 
frequencies for I' = 0.  

Figure 3. Frequency dependence of the energy velocity. 

8. Connection with quantum mechanics 
For a wide range of experiments, the simple classical theory accounts for the main 

features of the observed absorption and dispersion in the region of a resonance line. 
More detailed investigations of optical spectra sometimes reveal departures from the 
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simple classical formulae and require a more complex quantum-mechanical treatment. 
Nevertheless, it is common for quantum-mechanical treatments to lead to formulae 
of the classical type in some low order of calculation. It is therefore possible to make 
some comments on the quantum-mechanical treatment of absorption and dispersion, 
using as a basis the classical results of the preceding sections. 

In  the quantum-mechanical treatment of dispersion, in a dielectric having a 
single resonance, the physical system is regarded as having three components : the 
electromagnetic field, an oscillation (or excited state) of the dielectric which is coupled 
to the electromagnetic field, and a large number of excited states of the dielectric 
which are not directly coupled to the electromagnetic field. We call the excited state 
of the dielectric which interacts with the electromagnetic field (i.e. has a non-vanishing 
dipole moment) the fundamental state, while the large assembly of non-interacting 
states is called the reservoir. For example, in the theory of the optical properties of 
lattice vibrations, the long-wavelength transverse-optic vibration is the fundamental, 
and all the remaining vibrations of the lattice constitute the reservoir. 

In  an idealized measurement of the optical properties of a dielectric, a mono- 
chromatic plane-parallel beam of radiation is passed perpendicularly through a 
parallel slab of the dielectric and the amount of radiation transmitted through, or 
reflected from, the slab, parallel to the direction of incidence, is measured. Thus 
ideally the radiation has a single frequency o with a well-defined wave vector k, and 
only a single mode of the electromagnetic field is excited. In  the absence of any 
interaction between the fundamental state and the reservoir, the problem is simply 
that of a single mode of the electromagnetic field interacting with a dielectric having a 
single type of transition, from the ground state to the fundamental state. This problem 
can be solved exactly (see Landau and Lifshitz 1965, p. 139) and it is found that the 
dielectric oscillates in time between its ground and fundamental states, but that the 
time-rate of irreversible transfer of energy from the electromagnetic field to the 
dielectric is zero. 

This situation is analogous to a classical treatment based on equation (2) but with 
the damping r neglected from the outset. However, in all real systems the funda- 
mental is coupled to a reservoir. For example, the long-wavelength optic lattice 
vibration is coupled to the remaining vibrations by anharmonic interactions. The  
quantum-mechanical problem can in general no longer be solved exactly, and some 
approximate method must be used. 

The  most familiar approximation uses time-dependent perturbation theory 
(Heitler 1954), and what is calculated is the probability per unit time l / ~  that the 
dielectric makes a transition from the ground state to an excited state accompanied 
by an irreversible extraction of a single quantum of energy from the radiation field. 
In  this theory the fundamental state acts as a bridge between the electroraagnetic field 
and the reservoir. Energy is first transferred reversibly from the electromagnetic field 
to the fundamental state and is then transferred irreversibly from the fundamental 
state to the reservoir state. The  fundamental state is a virtual intermediate state 
in the absorption process, and the real final state of the dielectric is always one 
of the reservoir states. The  energy carried by the electromagnetic field and the 
fundamental contributes to the energy density of the wave, in the spirit of 
5 3 above. Energy transferred to the reservoir states is irreversibly removed from 
the wave. 

The  quantum-mechanical rate at which electromagnetic energy density is dissi- 
pated in the dielectric is Aw/VT. Equating this to the analogous classical expression 
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in the first line of equation (ZO), it is found that 

877% 
2 n K  = ~ 

VIE]'T' (38) 

Xow 11. calculated quantum-mechanically (using semi-classical radiation theory) is 
proportional to V/E12, and the right-hand side of (38) is of course independent of V 
and ;E  1'. This equation can be established rigorously using the quantum-mechanical 
expression for the complex dielectric constant (Kubo 1957) and comparing the 
imaginary part with the quantum-mechanical expression for l / ~  (see e.g. p. 147 of 
Landau and Lifshitz 1965). 

The  proportionality of 117 to the imaginary part of the dielectric constant 2 n ~  is 
not usually made clear in textbook treatments. It should be emphasized that the 
classical relaxation rate 117' introduced in 5 6 refers to decay of energy flow at a point 
moving with the energy velocity, and is not the classical analogue of 1 / ~ .  

Finally we note from (9) that, in the limit of zero I?, the imaginary part of the 
dielectric constant tends to a delta function of strength n ~ , h ~ / 2 w ~  placed at w = wo. 
This differs from the result of vanishing imaginary part a t  all frequencies which is 
obtained when I' is neglected from the beginning. General causality requirements in 
the theory of the dielectric constant (Stern 1963) show that in the presence of 
dispersion there must always be a non-vanishing imaginary part. The  correct way to 
treat the limit of zero damping both in classical and quantum theory is to derive 
expressions for the dielectric constant in the presence of damping, and then to let the 
damping strength tend to zero. 
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